Blow-up and global asymptotics of the limit unstable Cahn-Hilliard equation

نویسندگان

  • Jonathan D. Evans
  • Vladimir A. Galaktionov
  • J. F. Williams
چکیده

We study the asymptotic behaviour of classes of global and blow-up solutions of a semilinear parabolic equation of Cahn-Hilliard type ut = −∆(∆u + |u|u) in R ×R+, p > 1, with bounded integrable initial data. We show that in some {p, N}-parameter ranges it admits a countable set of blow-up similarity patterns. The most interesting set of blow-up solutions is constructed at the first critical exponent p = p0 = 1 + 2 N , where the first simplest profile is shown to be stable. Unlike the blow-up case, we show that, for p = p0, the set of global decaying source-type similarity solutions is continuous and determine the stable mass-branch. We prove that there exists a countable spectrum of critical exponents {p = pl = 1+ 2 N+l , l = 0, 1, 2, ...} creating bifurcation branches, which play a key role in general description of solutions globally decaying as t → ∞.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The existence of global attractor for a Cahn-Hilliard/Allen-Cahn‎ ‎equation

In this paper, we consider a Cahn-Hillard/Allen-Cahn equation. By using the semigroup and the classical existence theorem of global attractors, we give the existence of the global attractor in H^k(0

متن کامل

Global Solvability and Blow up for the Convective Cahn-hilliard Equations with Concave Potentials

We study initial boundary value problems for the convective Cahn-Hilliard equation ∂tu+ ∂ 4 xu+ u∂xu+ ∂ 2 x(|u| u) = 0. It is well-known that without the convective term, the solutions of this equation may blow up in finite time for any p > 0. In contrast to that, we show that the presence of the convective term u∂xu in the Cahn-Hilliard equation prevents blow up at least for 0 < p < 4 9 . We a...

متن کامل

The Viscous Cahn-hilliard Equation: Morse Decomposition and Structure of the Global Attractor

In this paper we establish a Morse decomposition of the stationary solutions of the one-dimensional viscous Cahn–Hilliard equation by explicit energy calculations. Strong non-degeneracy of the stationary solutions is proven away from turning points and points of bifurcation from the homogeneous state and the dimension of the unstable manifold is calculated for all stationary states. In the unst...

متن کامل

The viscous Cahn - Hilliard equation . Part I : computations

The viscous Cahn-Hilliard equation arises as a singular limit of the phase-field model of phase transitions. It contains both the Cahn-Hilliard and Allen-Cahn equations as particular limits. The equation is in gradient form and possesses a compact global atUactor 4 comprising heteroclinic orbits between equilibria. Two classes of wmputati0n.m described,. First heteroclinic o&its on the global a...

متن کامل

The Viscous Cahn{hilliard Equation Part I: Computations 1

The viscous Cahn-Hilliard equation arises as a singular limit of the phase-eld model of phase transitions. It contains both the Cahn-Hilliard and Allen-Cahn equations as particular limits. The equation is in gradient form and possesses a compact global attractor A, comprising heteroclinic orbits between equilibria. Two classes of computation are described. First heteroclinic orbits on the globa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2006